
111111 111

United States Patent
Wright

[19]

[54] METHOD OF EFFICIENT COLLECTION OF
SQL PERFORMANCE MEASURES

[75] Inventor: John Harvey Wright, Richmond, Tex.

[73]

[21]

[22]

[51]
[52]
[58]

[56]

Assignee: BMC Software, Inc., Houston, Tex.

Appl. No.: 835,953

Filed: Apr. 11, 1997

Int. CI. 6
.. G06F 17/30

U.S. CI. 707/4; 707/2; 707/3; 707/5
Field of Search 707/2,4,3,5

5,555,367
5,664,172
5,724,569
5,742,806
5,758,357
5,761,654
5,761,657
5,765,146
5,765,147

References Cited

U.S. PATENT DOCUMENTS

9/1996 Premerlani et al. 395/161
9/1997 Antoshenkov 707/4
3/1998 Andres .. 707/2
4/1998 Reiner et al. 707/3
5/1998 Barry et al. 707/202
6/1998 Tow .. 707/2
6/1998 Hoang ... 707/4
6/1998 Wolf et al. 707/2
6/1998 Mattos et al. 707/4

OlliER PUBLICATIONS

IBM Database 2 performance: Design, Implementation, and
tuning, Cheng et aI., IBM Systems Journal, vol. 23, No.2,
Aug. 1984,pp. 189-210.
Fast Algorithms for Universal Quantification in Large Data
base, Graefe et aI., ACM Transactions on Database Systems,
vol. 20, No.2, Jun. 1995, pp. 187-236.
A Performance Analysis of Relational And Hierarchical
Database Packages based on Query Response, Warren G.
Weis, Computing vol. 3, No.4, pp. 18-26, Sep. 1995.

MVS/ESA

MASTER

DATA
COLLECTOR

DB2 1Q

US005860069A

[11] Patent Number:

[45] Date of Patent:

5,860,069
Jan. 12, 1999

Detector User Guide, Detector V2.1 P512AD Addendum,
Platinum Technology, Feb. 1997.

SmartMode overview http://www.ibi.com/products/smart
mode/overview.html, Nov. 1994.

Statement of inventor regarding upatented prior art, No
Date.

Primary Examiner-Thomas G. Black
Assistant Examiner-Shahid Alam
Attorney, Agent, or Firm-Tim Headley; Haynes and
Boone, L.L.P.

[57] ABSTRACT

A computerized method of intercepting SQL processing
within a relational database. The relational database includes
a relational database management program having SQL
processing logic. The method includes the steps of: (a)
enabling an SQL intercept code by connecting directly into
the SQL processing logic of the relational database man
agement program; (b) using the SQL intercept code to
intercept an SQL statement made to the relational database;
(c) using the SQL intercept code to collect a first set of
real-time SQL performance information located in selected
structures of the relational database; (d) returning control to
the SQL processing logic until the relational database man
agement program has processed the SQL statement to
completion; (e) using the SQL intercept code to collect a
second set of real-time SQL performance information
located in the structures; (f) comparing the first set with the
second set in order to measure the performance of the SQL
statement; and (g) returning control to the relational data
base management program.

14 Claims, 5 Drawing Sheets

67

CSA

u.s. Patent

FIG.1a
Jan. 12, 1999

64- i USER 62
MVS/ESA 68 -J

•
66

12
DATA

COLLECTOR

65

+
I

L
/

SOL PROCESSING WPH
MODULE

42 28
-,,--- SOL

DSNXERD CA

Sheet 1 of 5 5,860,069

/,67

EXPORT
DATA SETS

78""",

TRACE BATCH
DATA REPORTS
SETS

\69

ARCHIVED
DATA SETS

'-79
/26, ~6",

\ / _'\.
\ / \

SPA WWFR RDA

f J 30

• ,-
QBAC OXST RDI

114-- '-28J 26/ DBM1
18

46 70

DSNXERT INTERCEPT 84

ECSA

36 52 124 -
MEPL J8 J HOOK LOGIC

MASTER CSA 72

DB2 10 -

u.s. Patent Jan. 12, 1999 Sheet 2 of 5

FIG.1b

117

F/G.4

204~

56

42

DSNXERD

113

70

INTERCEPT

115

46

DSNXERT

LOCATE MEPL

SCAN MEPL FOR
DSNXERD

SCAN MEPL FOR
DSNXERT

SCAN DSNXERD FOR
DSNXERT --

119

250

254

258

262

266

ENABLE BY REPLACING EACH
OCCURENCE OF DSNXERT
WITH INTERCEPT ADDRESS

5,860,069

278

FIG. 2

VIRTUAL STORAGE

82

LPD

104----j

,/96\

AVT

/,96\

[J"1 fDIBl olB DIB TDIBl
1

/11011. ., ~C:2 1_°082

'-APPTUNE LPo ENTRY

70

---,

ACTIVE 108

REDUCTION
TABLE

INACTIVE 109
REDUCTION

TABLE

100

1
APPTUNE SQL INTERCEPT HEADER

86

d
•
rJl
•
~
~
~ =

~
~

?
'""'" ~N

'""'" \C
\C
\C

'JJ. =-~
~
~

0

'""" Ul

Ul
00
0\ = = 0\
\C

u.s. Patent Jan. 12, 1999 Sheet 4 of 5 5,860,069

FIG.J
BUILD, ACQUIRE, INITIALIZE L/-STORAGE AREAS AND CONTROL

200

BLOCKS (AS REQUIRED)

r
ENABLE INTERCEPT 1----204

I
INTERCEPT SQL PROCESSING V

2

IN THE DSNXERD

08

(ASQXISQL)

I
V

212
NAVIGATE AND GATHER
FIRST SET OF METRICS

I
RETURN CONTROL TO SQL DML l/ PROCESSING TO COMPLETION

216

I
PASS CONTROL BACK l----220

TO INTERCEPT

I
V

2
NAVIGATE AND GATHER

24

SECOND SET OF METRICS

I
COMPARE FIRST SET WITH V

22

SECOND SET

8

I
l--/2J2

SUMMARIZE RESULTS

I
CLEAN UP AND

l--/2J6

RETURN TO DB2

u.s. Patent Jan. 12, 1999

SCAN ACnVE REDUCnON
TABLE FOR KEY VALUE

OF SQL DML STATEMENT

Sheet 5 of 5

JOO

V

~J04
r------L---'----.,.

125

DOES THE DESIRED YES
INFORMAnON EXIST? r-:-==------~

NO

IS THE TABLE FULL? NO

YES
J08

L...--__ ----l ALLOCATE NEW
TABLE

FIG. 5

ADD A NEW ENTRY;
SET KEY VALUES AND

CURRENT TOTAL
TO ZERO

J16
"-- ADD DIFFERENCE TO TOTAL;

REPLACE OLD DIFFERENCE
WITH NEW

J20
'",- SUMMARIZE RESULTS

/
J24

NEXT STEP--RETURN
TO DB2 OR OTHER

OpnONAL PROCESSING

5,860,069

5,860,069
1

METHOD OF EFFICIENT COLLECTION OF
SQL PERFORMANCE MEASURES

BACKGROUND OF THE INVENTION

This invention relates to acquisition of performance and
resource consumption data from a relational database, and,
more particularly, to a method of retrieving this data, specific
to Structured Query Language (SQL) queries, from the DB2
database licensed by International Business Machines Corp.
(IBM). The American National Standards Institute (ANSI)
and the International Standards Organization (ISO) pub
lished SQL standards in 1986 and 1987, respectively. ANSI
and ISO jointly worked on an extension to the standards,
variously called SQL2, SQL-92, or SQL/92. Another exten
sion to the standards, SQL3, is in progress, to enhance
relational capabilities, and add support for object-oriented
features.

A query to a relational database is a request for informa
tion from the database based on specific conditions. For
example, a query could be a request for a list of all customers
in a customer table who live in Texas. In order to reduce
response time to SQL queries which are directed to a
relational database, a user, such as a systems programer, an
applications programer, or a database administrator,
improves his hardware, by buying a faster CPU or adding
more space for data storage, or both, or improving his
response time by the buffering of data objects.

Alternatively, the user optimizes the SQL statements. The
user optimizes SQL statements, also known as "tuning",
through monitoring and measuring SQL performance. He
measures performance by determining what amount of
available system resources an individual SQL statement is
using, and the overall workload impact of any specific SQL
statement. The user makes changes based on these obser
vations.

However, due to the complexity of the relationships
among the data, the process of tuning SQL statements is
complex, time consuming, and demands considerable sys
tem resources. For example, DB2 for Multiple Virtual Sys
tem (MVS) offers a detailed SQL trace capability. However,
this SQL trace can add anywhere from 50% to 100%
overhead to DB2. Because of this large overhead, the SQL
trace is generally not continually used. Other optimization
programs, such as thread or transaction level traces, provide
measures that identify only the most resource-demanding
groups of SQL statements. These traces are not capable of
identifying the specific SQL statements in need of tuning.
Still other optimization routines measure performance
across the entire SQL process, including DB2's SQL Pro
cessing Prologue and the Epilogue. These routines give an
aggregate measure called "Class 2" time, which is of limited
value in determining how a specific SQL statement per
formed.

SQL Data Manipulation Language (DML) statements
represent the actual low-level SQL queries which either
select, update, insert, or delete data from DB2. Optimizing
these on a statement by statement basis is the most effective
way to minimize resource consumption and maximize per
formance.

2
without the monitoring program consuming 50% or more of
system resources.

SUMMARY OF THE INVENTION

5 A computer-readable medium is encoded with a method
of intercepting SQL processing within a relational database.
The relational database includes a relational database man
agement program having SQL processing logic. The method
includes the steps of: (a) enabling an SQL intercept code by

10 connecting directly into the SQL processing logic of the
relational database management program; (b) using the SQL
intercept code to intercept an SQL statement made to the
relational database; (c) using the SQL intercept code to
collect a first set of real-time SQL performance information

15 located in selected control blocks of the relational database;
(d) returning control to the SQL processing logic until the
relational database management program has processed the
SQL statement to completion; (e) using the SQL intercept
code to collect a second set of real-time SQL performance

20 information located in the control blocks; (f) comparing the
first set with the second set in order to measure the perfor
mance of the SQL statement; and (g) returning control to the
relational database management program.

In another feature, the relational database management
25 program is an IBM Database 2 program (DB2). DB2

includes an SQL processing module, an SQL processing
routine having an SQL processing entry point, and an SQL
Data Manipulation Language processing routine having an
SQL Data Manipulation Language processing entry point.

30 DB2 further includes a Master Entry Point List. When
operating in DB2, the step of enabling comprises the sub
steps of: (a) loading a substitute SQL processing routine to
the medium; (b) scanning the relational database manage
ment program for the address of the SQL Processing Entry

35 Point and the address of the SQL Data Manipulation Lan
guage processing entry point; (c) scanning a portion of the
medium, which the SQL processing module occupies, for
the address of the SQL Data Manipulation Language pro
cessing entry point; and (d) replacing the address of the SQL

40 Data Manipulation Language processing entry point with an
entry point address of a substitute SQL processing entry
point.

In another feature, the step of enabling comprises the
substeps of (a) loading a substitute SQL processing routine

45 to the medium; (b) locating the Master Entry Point List; (c)
scanning the Master Entry Point List for the address of the
SQL processing routine entry point; (d) scanning the Master
Entry Point List for the address of the SQL D ML processing
entry point; (e) scanning a portion of the medium occupied

50 by the SQL DML processing routine and locating each
occurrence of the entry point address of the SQL DML
processing module; and (f) for each location matched in step
(e), replacing the address of the SQL Data Manipulation
Language processing point with an entry point address of the

55 substitute SQL processing routine.
In another feature, the invention provides an efficient

means to gather performance data concerning the processing
and resource consumption of SQL DML statements.

In another feature, the invention identifies specific SQL
60 statements consuming the most resources, thus enabling

system administrators to optimize these SQL statements. What the industry needs is a method of reducing the
response time to SQL queries directed to a relational
database, without having to increase the hardware
requirements, and without having to provide more memory
caches for data objects. More specifically, what the industry 65

needs is a program that will directly monitor SQL DML
performance and resource consumption on an ongoing basis,

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a is a block diagram showing the relationship
between the program of the preferred embodiment and DB2.

FIG. 1b is a chart showing process flow through the
Intercept of the preferred embodiment.

5,860,069
3

FIG. 2 is a block diagram of the Intercept of the preferred
embodiment.

FIG. 3 is a flow chart of the method of the preferred
embodiment.

FIG. 4 is a flow chart of the enablement step of the method
of the preferred embodiment.

FIG. 5 is a flow chart of the summarization step of the
preferred embodiment.

DETAILED DESCRIPTION OF IRE
PREFERRED EMBODIMENT

4
Now referring to FIG. 2, the Intercept 70 is stored in

virtual storage 82, in a common memory area called ECSA
84 (shown in FIG. 1a), and is made up of anAPPTUNE SQL
Intercept Header 86, an APPTUNE Intercept control area

5 (XICA) 92, a chain of DB2 Information Blocks (DIBs) 96,
an Object Data Block (ODB) 100, an APPTUNE Vector
Table 104, an active reduction table 108, an inactive reduc
tion table 109, and an APPTUNE Link Pack Directory
(LPD) entry 110 in a LPD 111.

10

The method of the present invention is used with IBM
Database 2, having an MVS/ESA operating system, rela
tional database (DB2), but it could be used with any rela- 15

tional database. The program of the preferred embodiment
(named "APPTUNE"TM and available from BMC Software
Inc. of Houston, Tex.) is a method of efficient collection of
SQL processing performance measures.

The Intercept Header 86 points to the XICA92. The XICA
92 performs the function of establishing primary address
ability to the DIBs 96. A single XI CA 92 is used per version
and maintenance level of the APPTUNE program on a MVS
image (an initial program load or "IPL" session).

The DIBs 96 store information particular to a DB2 10,
such as where the entry point is for the DSNXERT 46. The
address of the first executable instruction of a routine is
called the entry point of that routine. In order to execute a
routine, a specific, addressable entry point is required. Each
DIB 96 points to an ODB 100. The purpose of the ODB 100
is to maintain information particular to a specific Data

In the preferred embodiment, as shown in FIG. 1a the 20

APPTUNE program executes on an IBM MVS mainframe
computer system not shown in the figures. The system uses Collector 66/DB2 10 combination, such as the location of

the reduction tables (e.g., 108 and 109), which reduction
table is currently active, how many entries are in the active

an MVS/ESA operating system 12. DB2 10 runs on MVS
12.

25 reduction table 108, as well as other information. DB2 10 includes a control block named the Master Entry
Point List (MEPL) 36, which is located in the Master
address space 52 of DB2, and an SQL processing module 18,
control blocks 26, and corresponding data structures
(DSECTS) 28, which are located in an DB2 address space 30

called DBM1 30. The SQL processing module 18 includes

The active reduction table 108 is an area of storage in
which the APPTUNE program collects and stores metrics.
Metrics are data which a routine can turn into information.
The APPTUNE program may externalize reduction tables by
writing the reduction tables to DASD at timed intervals, on
user demand, or whenever the reduction tables become full.
If a reduction table is being unloaded, then the APPTUNE
program will allocate and use an additional table. The
APPTUNE program uses the reduction tables in a ring

an SQL processing routine (DSNXERD) 42, and an SQL
Data Manipulation Language (DML) processing routine
(DSNXERT) 46.

The DSNXERD 42 contains the main SQL processing
logic. The SQL processing logic retrieves and organizes data
which DB2 10 needs to satisfy the user's request. The user
62 is usually either a systems programer, business analyst,
an applications programer, or a database administrator. The
user 62 requests data from DB2 10 by means of an SQL
request 56.

The user 62 interfaces with the APPTUNE program (not
shown) via a terminal 64. The APPTUNE program has the
following components: a Data Collector 66, a substitute
SQL DML processing routine (ASQXISQL) or Intercept 70,
and a user interface (not shown).

The user 62 interfaces with the Data Collector 66 as an
arrow 68 indicates. The Data Collector 66 is located in an
address space called the Data Collector address space 65.
The Data Collector 66 has administrative functions, includ
ing (1) storing data specific to all Data Collector
users' requirements, (2) retrieving the data either from con
trol blocks 26, data structures 28, or from trace data sets 78,

35 fashion whenever the data requires an unload, in order to
avoid data loss.

The ODB 100 points to anAPPTUNE Vector Table (AVT)
104 and serves to anchor the active reduction table 108.

40 Only one vector table exists per Data Collector 66 (shown in
FIG. 1a). This is significant because it permits calling certain
helper subroutines.

The AVT 104 contains various parameters and subroutine
entry points which the Intercept 70 uses for the purpose of

45 intercepting and obtaining metrics.
The LPD 111 is an MVS control block chain whose

function is to maintain pointers to routines across a cycle of
MVS or MVS warm starts (starts without a microcode load).
The APPTUNE program adds the APPTUNE LPD entry 110

50 to this chain. The APPTUNE LPD entry 110 points to the
XICA 92.

Referring again to FIG. 1aprior to operation, a system

to satisfy the requirements of the user 62, and (3) processing
various categories of commands on behalf of the user 62. 55

The data is often externalized to a Direct Access Storage
Device (DASD) in the form of one or more trace data sets

administrator or technician must install and enable the
APPTUNE program. Installation is the process in which the
technician loads all of the components of the Intercept 70 to
computer memory and makes it ready for use. Installation
involves the steps of loading and relocating the code of the
Intercept 70. A Hook Logic code (ASQWHDB) 124, a
subroutine which is part of the Data Collector's startup,

78 for historical reporting. The user 62 may also retrieve the
data from the trace data sets 78. The Data Collector 66 is
also responsible for reading and writing to disk, and for
performing tasks which need to occur on a timed basis. The
Data Collector 66 can export all data to export data sets 67
for use in batch reports 69. The Data Collector 66 also stores
trace data sets 78 for archiving in archive data sets 79. The
data in the archived data sets 79 is available for batch reports
69. In sum, the Data Collector 66 is responsible for getting
the data together to service the data requests of the user 62.

60 modifies the code of the Intercept 70 itself at installation, in
order to make the Intercept's control block structure self
addressable. The Hook Logic code 124 is located in a
common memory area called the ECSA 72.

Referring now to FIGS. 1a and 4, step 204, enablement or
65 "hooking" of the Intercept 70, occurs whenever the user 62

or the system administrator (not shown) requests enablement
explicitly via an APPTUNE command, and, optionally, each

5,860,069
5

time the Data Collector 66 or DB210 starts. The Hook Logic
code 124 enables only one copy of the Intercept 70, per
MVS image, specific to the release and maintenance levels
of DB2 10, per MVS image.

In general terms, enablement 204 involves the verification
or generation of any required control blocks by the Hook
Logic code 124, the scanning of the MEPL 36, which an
arrow 38 indicates, for the entry points/implant points of the
DSNXERD 42 and the DSNXERT 46, respectively, and
replacement, by compare and swap logic, of the entry point
at the implant point with the entry point of the Intercept 70.
The DSNXERD 42 and the DSNXERT 46 are located in the
DBM1 address space 30.

Referring again to FIG. 3, after enablement, in steps
208-236, the Intercept 70 gathers a first set of data, returns
control to the DSNXERT 46, regains control, gathers a
second set of data, reduces the data into a summary format,
and then returns control to the DSNXERD 42 or to other
optional processing. Once enabled, whenever DB210 makes
a call for the purpose of processing an SQL DML request,
the Hook Logic code 124 prevents DB2 10 from calling or
branching to the DSNXERT 46, and, instead, DB2 calls or
branches to the Intercept 70.

6
arrow 114 indicates. In step 216, the Intercept 70 returns
control to the DSNXERT 46 for processing to completion, as
an arrow 115 indicates. In step 220, the DSNXERT 46
passes control back to the Intercept 70, as an arrow 117

5 indicates. In step 224, the Intercept 70 navigates and gathers
a second set of metrics, as the arrow 114 indicates. In step
228, the Intercept 70 compares the first set with the second
set of metrics. In step 232, the Intercept 70 summarizes the
results of the comparison. In step 236, Intercept 70 cleans up
and returns control to the DSNXERD 42, to the line of code

10
immediately after the call to the Intercept (formerly, a call to
the DSNXERT 46), or to DB2 10, as an arrow 119 indicates.

Referring again to FIG. 3, in step 212, the Intercept 70
navigates certain control blocks 26 and data structures 28,

15 concurrently obtaining a first series of metrics. The metrics,
which the Intercept 70 obtains, include both performance
metrics and resource consumption metrics. Examples of
control blocks 26 and data structures 28, which the Intercept
70 navigates, include: the WWFR, a counting/statistics

20 control block; the RDA, which stores data about a user
program; the QBACKAREA (QBAC), a data structure
(DSECT) which contains buffers and input/output informa
tion; the QXST, a DSECT which describes data concerning
input/output operations and failures; the SQLCA, a DSECT

25 which stores information about SQL errors; the SPA, a
control block which stores certain SQL text; the RDI which
contains information about the SQL statement being
executed; and the WPH (window pool header), a control

Referring again to FIG. 4, the enablement step 204 is
made up of substeps 250--278. In sub step 250, the Hook
Logic code 124 (shown in FIG. 1a) reads from disk and
loads the Intercept 70. In sub step 254, the Hook Logic code
124 scans the DB2 address spaces. There are four primary
address spaces associated with DB2 10, one of which, 30

named the Master address space 52, includes the MEPL 36.
The MEPL 36 is a vector of addresses of entry points,
module names, and maintenance levels. The Hook Logic
code 124 navigates DB2 control block chains in the Master
address space 52 and locates the MEPL 36. In sub step 258, 35

the Hook Logic code 124 scans the MEPL 36 for an address

block which contains input/output information specific to a
process.

In step 216, after incrementing a counter in the Intercept
70, the Intercept 70 then passes control back to the DSNX
ERT 46, allowing the DSNXERT 46 to complete all Data
Manipulation Language processing requirements. In step
220, because the Hook Logic code 124 has replaced the
entry point of the DSNXERT 46 with the entry point for the

of the entry point of the DSNXERD 42. The DSNXERD 42
is important because the DSNXERD is the first routine that
DB210 calls when DB2 is ready to begin processing an SQL
statement 56. Next, in sub step 262, the Hook Logic code 124 40

then scans the MEPL 36 for the address of the entry point of
the DSNXERT 46. The DSNXERD 42 calls the DSNXERT

Intercept 70, control automatically passes back to the Inter
cept 70. In step 224, the Intercept 70 then navigates the same
control blocks 26 and DSECTs 28, and concurrently obtains
a second series of metrics. In step 228, the Intercept 70
compares the first set and the second set of metrics by
calculating their difference.

46 whenever DB2 10 begins to process an SQL DML
statement.

Without the APPTUNE program installed, DB2 10 would
pass control from a series of DB2 routines to the DSNXERD
42. The DSNXERD 42 would then pass control for an SQL
DML statement to the DSNXERT 46, and then return to the
DSNXERD 42 after DSNXERT processing is complete.
However, the Hook Logic code 124 intercepts normal pro
cess flow by hooking or enabling the Intercept 70 into the
normal process flow (shown in FIGS. 1a and 1b).

Referring again to FIGS. 1a and 3, in sub step 266, the
Hook Logic code 124 scans the DSNXERD 42 for the entry
point of the DSNXERT 46. The above substeps 250-266 are
sometimes referred to as an installation step. In sub step 278,
the Hook Logic code 124 enables the APPTUNE program
by replacing each occurrence in the DSNXERD 42 of the
entry point of the DSNXERT 46, with the entry point of the
Intercept 70.

Referring now to FIGS. 1b and 3, in step 200, prior to
enablement 204, the Intercept 70 builds, acquires, and
initializes storage areas and control blocks (as its operating
process requires). After enablement 204, in step 208, the
Hook Logic code 124 intercepts SQL processing in the
DSNXERD 42, as an arrow 113 indicates. In step 212, the
Intercept 70 navigates and gathers a first set of metrics, as an

FIG. 5 depicts the substeps of step 232, summarization. In
sub step 300, the Intercept 70 locates an existing entry in the

45 active reduction table 108 that matches a key value of a then
current SQL DML statement. The Intercept 70 keeps track of
certain information, such as consumption and resource
metrics, counter values, logic flags, and status. The Intercept
70 keeps almost constant track of the counter values, logic

50 flags, and status, as a flow arrow 125 depicts. In substep 304,
if any of the certain information does not exist, sub step 308
asks whether the active reduction table 108 (shown in FIG.
2) is full. If the active reduction table 108 is not full, then,
in sub step 310, the Intercept 70 allocates storage and adds a

55 new entry, setting the key values and a value for a current
total to zero. Processing then continues to substep 316. In
sub step 308, if the active reduction table 108 is fill, then, in
sub step 312, the Intercept 70 allocates a new active reduc
tion table. Processing then returns to the substep 300 above,

60 of locating an existing entry in the active reduction table
108. In substep 316, if the certain information does exist,
then, for each metric, the Intercept 70 adds each difference
which the comparison step 228 above calculates, to a total,
replacing the old difference. The Intercept 70 retains this

65 total as an entry in the active reduction table 108.
In sub step 320, at the request of the user 62, the Data

Collector 66 extracts the totals from the active reduction

5,860,069
7 8

routine having an SQL processing entry point and an asso
ciated address, and an SQL Data Manipulation Language
processing routine having an SQL Data Manipulation Lan
guage processing entry point and an associated address, in

table 108, divides the totals by the number of calls made to
the particular SQL DML statement type of interest to the
user, and presents the user with a visual display showing
both a total and an average of performance and resource
consumption data which the APPTUNE program associates
with the particular SQL DML statement. In substep 324, the
Intercept 70 returns control to DB2 10 or other optional
processes.

5 which the step of enabling comprises the substeps of:

An advantage of the invention is that it gathers perfor
mance data concerning the processing of, and resource 10

consumption for, SQL DML statements.

Another advantage of the present invention is that the
APPTUNE program consumes only about 20 microseconds
of CPU time per SQL statement, substantially less than ten
percent (10%) of the total CPU time which DB2 requires to 15

process an SQL statement. Unlike prior art performance
measures, this low level of consumption of CPU time
enables the APPTUNE program to be run on a continual
basis.

Another advantage of the present invention is that it
identifies specific SQL DML statements consuming the most
resources, thus enabling users 62 to optimize these SQL
DML statements.

20

a. loading a substitute SQL processing routine to the
medium;

b. scanning the relational database management program
for the address of the entry point of the SQL processing
routine and the address of the entry point of the SQL
Data Manipulation Language processing routine;

c. scanning a portion of the medium, which the SQL
processing module occupies, for the address of the
entry point of the SQL Data Manipulation Language
processing routine; and

d. replacing the address of the entry point of the SQL Data
Manipulation Language processing routine with an
entry point address of a substitute SQL Data Manipu
lation Language processing routine.

3. The medium of claim 1, wherein the IBM Database 2
program further includes an SQL processing module, an
SQL processing routine having an associated entry point and
address, a Master Entry Point List, and an SQL Data
Manipulation Language processing routine have an associ-

Another advantage of the present invention is that the
APPTUNE program displays SQL DML performance data
at the request of the user 62.

25 ated entry point and address, in which the step of enabling
comprises the substeps of:

Multiple variations and modifications are possible in the
embodiments of the invention described here. Although
certain illustrative embodiments of the invention have been 30

shown and described here, a wide range of modifications,
changes, and substitutions is contemplated in the foregoing
disclosure. In some instances, some features of the present
invention may be employed without a corresponding use of
the other features. Accordingly, it is appropriate that the 35

foregoing description be construed broadly and understood
as being given by way of illustration and example only, the
spirit and scope of the invention being limited only by the
appended claims.

What is claimed is: 40

a. loading a substitute SQL processing routine to the
medium;

b. locating the Master Entry Point List;
c. scanning the Master Entry Point List for the address of

the entry point of the SQL processing routine;
d. scanning the Master Entry Point List for the address of

the entry point of the SQL DML processing routine;
e. scanning a portion of the medium occupied by the SQL

processing routine and locating each occurrence of the
entry point address of the SQL DML processing rou
tine; and

f. for each location matched in step e, replacing the entry
point of the SQL Data Manipulation Language pro
cessing routine with an entry point of the substitute
SQL Data Manipulation Language processing routine.

1. A computer-readable medium encoded with a method
of intercepting SQL processing within a relational database
including a relational database management program, the
relational database management program including SQL
processing logic, the method comprising the steps of:

4. The medium of claim 3, wherein the SQL processing
routine is DSNXERD and the SQL DML processing routine

45 is DSNXERT.

a. enabling an SQL intercept code by connecting directly
into the SQL processing logic of the relational database
management program;

b. using the SQL intercept code to intercept an SQL
statement made to the relational database;

c. using the SQL intercept code to collect a first set of
real-time SQL performance information located in
selected structures;

d. returning control to the SQL processing logic until the
relational database management program has processed
the SQL statement to completion;

e. using the SQL intercept code to collect a second set of
real-time SQL performance information located in the
selected structures;

f. comparing the first set with the second set in order to
measure the performance of the SQL statement; and

g. returning control to the relational database management
program.

5. The medium of claim 1, wherein the selected structures
are control blocks and data structures.

6. A computer-readable medium encoded with a method
of collecting selected SQL performance information asso-

50 ciated with the processing of a current SQL Data Manipu
lation Language routine statement within a IBM Database 2
program including control blocks, data structures, an SQL
processing module, an SQL processing routine having an
associated entry point, and an SQL Data Manipulation

55 Language processing routine comprising processing state
ments and an associated entry point entry point, in which the
method comprises the steps of:

60

a. building, acquiring, and initializing storage areas and
control blocks, as required;

b. enabling an SQL intercept code by connecting directly
into the SQL processing routine of the IBM Database
2 program;

2. The medium of claim 1, wherein the relational database 65

management program is an IBM Database 2 program further
including an SQL processing module, an SQL processing

c. passing control to a substitute SQL Data Manipulation
Language processing routine from the IBM Database 2
program at the point at which the IBM Database 2
program begins to process an SQL Data Manipulation
Language statement;

5,860,069
9

d. navigating selected structures in order to obtain a series
of metrics, and, concurrently, obtaining a first set of
required values from the series of metrics;

10
g. returning control to the relational database management

program.
9. The method of claim 8, wherein the relational database

management program is an IBM Database 2 program further e. passing control back to the SQL Data Manipulation
Language processing routine;

f. allowing the relational database management system to
complete SQL Data Manipulation Language process
ing requirements;

g. automatically passing control back to the substitute
SQL Data Manipulation Language processing routine;

5 including an SQL processing module, an SQL processing
routine having an SQL processing entry point and an asso
ciated address, and an SQL Data Manipulation Language
processing routine having an SQL Data Manipulation Lan
guage processing entry point and an associated address, in

10 which the step of enabling comprises the substeps of:

h. navigating the selected structures in order to obtain the
series of metrics;

i. obtaining a second set of required values from the series
of metrics;

j. comparing the first set and the second set;

k. summarizing the results of the comparing; and

1. returning control to the IBM Database 2 program.

15

7. The medium of claim 6 further utilizing an active 20

reduction table, and, wherein, the current SQL Data Manipu-
1ation Language statement includes certain key values, the
method comprising the additional step of summarizing the
selected SQL performance information which corresponds
to the current SQL Data Manipulation Language statement, 25

for later retrieval, the step of summarizing comprising the
substeps of:

a. loading a substitute SQL processing routine to the
medium;

b. scanning the relational database management program
for the address of the entry point of the SQL processing
routine and the address of the entry point of the SQL
Data Manipulation Language processing routine;

c. scanning a portion of the medium, which the SQL
processing module occupies, for the address of the
entry point of the SQL Data Manipulation Language
processing routine; and

d. replacing the address of the entry point of the SQL Data
Manipulation Language processing routine with an
entry point address of a substitute SQL Data Manipu
lation Language processing routine.

10. The method of claim 8, wherein the IBM Database 2
program further includes an SQL processing module, an
SQL processing routine having an associated entry point and
address, a Master Entry Point List, and an SQL Data
Manipulation Language processing routine have an associ-

a. locating an existing entry in the active reduction table
that matches a key value of the current SQL Data
Manipulation Language statement;

b. keeping track of certain information, such as counter
values, logic flags, and status;

30 ated entry point and address, in which the step of enabling
comprises the substeps of:

c. if any of the certain information does not exist, adding
a new entry, setting the key values and a value for a
current total to zero;

d. if the active reduction table is full, allocating a new
active reduction table and going back to step a;

e. for each metric, adding each difference which the
comparing step calculates to a total;

f. retaining the total as an active reduction table entry;
g. incrementing a count of updates for the active reduction

table entry; and
h. automatically returning control to the IBM Database 2

program.

35

40

45

a. loading a substitute SQL processing routine to the
medium;

b. locating the Master Entry Point List;
c. scanning the Master Entry Point List for the address of

the entry point of the SQL processing routine;
d. scanning the Master Entry Point List for the address of

the entry point of the SQL DML processing routine;
e. scanning a portion of the medium occupied by the SQL

processing routine and locating each occurrence of the
entry point address of the SQL DML processing rou
tine; and

f. for each location matched in step e, replacing the entry
point of the SQL Data Manipulation Language pro
cessing routine with an entry point of the substitute
SQL Data Manipulation Language processing routine.

8. A computerized method of intercepting SQL processing
within a relational database including a relational database
management program, the relational database management
program including SQL processing logic, the method com
prising the steps of:

11. The method of claim 10, wherein the SQL processing
routine is DSNXERD, and the SQL DML processing routine

50 is DSNXERT.

a. enabling an SQL intercept code by connecting directly
into the SQL processing logic of the relational database
management program;

b. using the SQL intercept code to intercept an SQL
statement made to the relational database; 55

c. using the SQL intercept code to collect a first set of
real-time SQL performance information located in
selected structures;

d. returning control to the SQL processing logic until the 60

relational database management program has processed
the SQL statement to completion;

e. using the SQL intercept code to collect a second set of
real-time SQL performance information located in the
selected structures;

f. comparing the first set with the second set in order to
measure the performance of the SQL statement; and

65

12. The method of claim 8, wherein the selected structures
are control blocks and data structures of the relational
database.

13. A computerized method of collecting selected SQL
performance information associated with the processing of a
current SQL Data Manipulation Language routine statement
within a IBM Database 2 program including control blocks
and data structures, an SQL processing module, an SQL
processing routine having an associated entry point, and an
SQL Data Manipulation Language processing routine com
prising processing statements and an associated entry point
entry point, in which the method comprises the steps of:

a. building, acquiring, and initializing storage areas and
control blocks, as required;

b. enabling an SQL intercept code by connecting directly
into the SQL processing routine of the IBM Database
2 program;

5,860,069
11 12

method comprising the additional step of summarizing the
selected SQL performance information which corresponds
to the current SQL Data Manipulation Language statement,
for later retrieval, the step of summarizing comprising the

c. passing control to a substitute SQL Data Manipulation
Language processing routine from the IBM Database 2
program at the point at which the IBM Database 2
program begins to process an SQL Data Manipulation
Language statement; 5 substeps of:

d. navigating selected structures in order to obtain a series
of metrics, and, concurrently, obtaining a first set of
required values from the series of metrics;

e. passing control back to the SQL Data Manipulation
Language processing routine; 10

f. allowing the relational database management system to
complete SQL Data Manipulation Language process
ing requirements;

g. automatically passing control back to the substitute 15

SQL Data Manipulation Language processing routine;

h. navigating the selected structures in order to obtain the
series of metrics;

i. obtaining a second set of required values from the series
of metrics; 20

j. comparing the first set and the second set;

k. summarizing the results of the comparing; and

1. returning control to the IBM Database 2 program.
14. The method of claim 13 further utilizing an active 25

reduction table, and, wherein, the current SQL Data Manipu
lation Language statement includes certain key values, the

a. locating an existing entry in the active reduction table
that matches a key value of the current SQL Data
Manipulation Language statement;

b. keeping track of certain information, such as counter
values, logic flags, and status;

c. if any of the certain information does not exist, adding
a new entry, setting the key values and a value for a
current total to zero;

d. if the active reduction table is full, allocating a new
active reduction table and going back to step a;

e. for each metric, adding each difference which the
comparing step calculates to a total;

f. retaining the total as an active reduction table entry;

g. incrementing a count of updates for the active reduction
table entry; and

h. automatically returning control to the IBM Database 2
program.

* * * * *

